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TWO-STREAM INSTABILITY FOR A SCATTEREDBEAM

It hZS

instability

PROPAGATING IN A COLLISIONAL PLASM

by

Barry S. Newberger and Lester E. Thode
Theoretical Division

Los Alamos Scientific Laboratory

1. INTRODUCTION

long been appreciated that the high-frequency

can be stabilized if the background plasma is

sional and the beam has a finite velocity spread.1 With a

relativistic electron beams for plasma heating2 and in order

iments on the propagation of these beams through neutral

sures~’4 we have been investigating this problem anew.

(~-~p) two-stre$m

sufficiently colli-

renewed interest in

to interpret exper-

gases at low pres-

The early calculation were essentially nonrelativiatic with relativistic

●ffects modeled in an ad hoc way through introduction of an anisotropic mass..—

Pheuomenological models used to interpret neutral gas propagation experiments

are essentially equivalent to the early, nonrelativistic, Vlasov calculations.

In order to put these models in perspective and to provide a linear theory from

which nonlinear saturation amplitudes can be obtained by partial numerical

simulation techniques,3 we have been carrying out a rigorous Vlasov theory o!

the collisjonal stabilization of the two-stream instability in a relativistic

electron beam. The equilibrium we choose is that of the so-called “scattered”
beam2,6

for which the electrons are monochromatic in energy but which have a

distribution in the directions of their momenta. This distribution is charac-

teristic of thJt produced by acatte;ing in an anode foil and, in any case, the

qualitative results are likely to be typical of those for other reasonable

choices of relativistic distribution function. The stability of pinched beams

can be estimated by talkingthe mean scattering anfile,~, which characterizes the

* where IB isdistribution function to be equal to the betstron angle, (~B/2~A)

the beam current and 1A the Alfven current. The beam and plasma are otherwise

homogeneous and infinite in extent.

The linear dispersion relation is described in Sec. 11 along with the iow-

est order correction due to momentum scattet to the cold beam, one-dimensional

dispersion relation. Some numerical results are presented in Sec. III and a

L-J-- - - -



II. LINEAR DISPERSION RELATION

In this section, the linear dispersion relatiou for electrostatic waves in

the beam-plasma system ;a presented.

The plasma is characterized by its plasma frequency Up and a (constant)

collision frequency v, measured in units of w as are all frequencies below.

The beam is characterized by a ❑ean momentum ?0 (or energy YO = (1 + Pi)+ in

units of the ●lectron rest momentum ❑Oc and a mean scattering

beam distribution function6 is taken to be

angle ~. The

f(;) =+6(P - Pn)csch(a)exp(acose) (1)
4nP; “

where a = 2/62 .

The dispersion relation i.s 1

dielectric function and Cb that for

units of w /$ c. The plasma part is
po

lm

(

1
&p(;) = — ~ +

~2 ❑

)

.
1 + v/uJ

i P

The beam part is ❑ore complicated.

beam), it is given by

= &p(u) + Cb(u,k) where &
P

is the plasma

the beam. The wave number k is measured in

well known:

(2)

For the 1-D case (propagation along the

aa kcoth(a) + w + ua
cb(w,k) = —

(
[a(l - f$2/k2) - 2f$Jk]eaw’k

y: k U2 - k2 2y~ sinh(a)

● {El[a(w/k + 1)] - El[a(w/k - l)]]

- 2f!~[sinh(a)(l/a+w/k) + cosh(a)]
)

(3)

where fl~= (1 - l/Y~), d = ~.np and El(z) is the exponential integral.6

For wave propagating obliquely to the beam, (2-D case) the b-am contribu-

tion is ❑arkedly ❑ ore complicated. We have

-ap~ + aa#

cb=—
I(w,k,a) , (4)

Yokz 2yOb2siinh(a)

.

and further

i



I(u,k,a) =
-(”2 + ‘2”:) ~ - ‘b~ s

and

where cos ~ = k /k.

FI and F2 are given in terms of tabulated transcendental

- 2n

-()
Y-
X E2n+l(-axa)
a /

where ~ = (- lu2/k2)*sin

x =-
8

( )

l+W+

(5)

(6)

functions by

(7)

.
En(z) is the exponential integral of n’th order’ and 10 is the modified Bessel

function of the firat kind and zero order. The last term provides the analytic

continuation of &b into the lower half w-plane and the values of the exponential

integrals are on their principle branch, -n < arg(z) S n. We remark that the

Landau-like integrals which give rise to the functions FI and F2 (given below)

have been considered by direct numerical integration in Ref. 6. The singular

nature of the integrals makes numerical integration very difficult and the

analytic continuation to the lower half plane could not be ●asily extracted.

The representation of F2 depends on the value of p ~ xb/j, where xb = 1 -

w/k COS ~.

For [1 . ~1 < 2, we have

ieaY

‘2 ‘(~
‘{

y[l,a(y - xb)]

m
+
x(

1)(3),..(2n - 1) y(n + 1/2, a(~ - xb

‘1
P

(2)(4)***(2n)(ia~)n
n=1

(8)
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where y(a,z) is the incomplete gauunafunction.8 If 1~/~j > 1, then

F= -E (-axb) +E (-a;) +
m (1)(3)... (2n - 1)

21 1 z (2)(4)o*o(2n)
n=l

[ ()

- 2n

x %.n+l(-a;) - $
1‘~+l(-a~) .

..-. ..

Fig. 1

Domains of validity in ths complex
p-plane of the two representations

of F2. Eq. 8~~,, Eq. 9A\\k

both:~.

This, limit is defined by a > 1, a6 > 1

(9)

The domain of validity of the two

representations are illustrated in

Fig. 1. There is a finite region of

overlap in the plane deleted of the

point p= -1. It can be shown that

the choice of domain of + above and

the definitions of Xb ●nd ~ preclude

the value of p = -1. There is a

choice of branch implicit in Eq. (8).

The choice is made by requiring that

the values of F2 and its derivative

be the same in both representations

in the overlap region.

In general, the dispersion rela-

tion ❑utt be solved numerically; how-

●ver, in the 1-D case, it is easy to

solve for the lowest order correction

to the

where 6

units of up). The dispersion relation is in this

1-
1-

UJ2(1+ v/ul)

In the collision-free

growth rate

cold beam dispersion relation.

is a typical growth rate (in

case

a 1 .} 2a 1

y;k2 (w/k - 1)2 y~k2a (w/k - 1)3 “
(lo)

case (v = O), this equation has the solution for the

(--8=- 1- 21’3;4ni’36- 24’3e;2ni’3
2

)
(11)

where

()

8 ~ #’3 6

. Y()



In the collisional case, the growth rate ~ecomes

(12)

where now

()Ii= +-%
yov

(J
-1/2

i= + n andOv

[01
~1/2 -1

E= — a .
y;v

In the limit a + CD,the cold beam case, the results above reduce to the well-

known growth rates.g In both the collisionless case and collisional case, we

find the important result that there are no 0(~2) corrections to the cold beam

growth rate. Thus, to have corrections of this order appearing in the growth

rate, we must have a~ * 1 at least, This is consistent with our recent results

in the interpretation of the Lawrence Livermore Laboratory Astron experiments.
10

Our requirement that a6 * 1 implies a scattering angle, 0, of about 60 mrad for

the effects of scatter to become important. The Astron beanlhad a ~ of --15 mrad

and this is consistent with our findings presented in Ref. 10 that the beam was

behaving essentially as a cold beam.

111. NUMERICAL SOLUTIONS

In order to obtain results for general values of the parameters, the dis-

persion relation must be solved numerically. In the I-D case, we have evaluated

the collision frequencies necessary for stabilization of the two-stream ❑ode

over a wide range of parameters and compared these with the early results. The

scaling over two orders of magnitude in y. are indicated in Table I. The beam-

to-plasma density ratio has been held fixed at 10-2. a rmaunnnhlv twn+rml unlit-
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Relativistic
Factor, 70

11

100

1000

TA6LL 1

STABILIZING COLLISION FREQUENCY FOR
TWO-STREAMINSTABILITY INA SCA71’EREDBEAH

rfean Beam-to-Tiasma Singhaus
Scattering Density Ratio, Collisio~
Angle, e n@p Frequency, V~

9.29° 0.01 3.3 x 10-2

3.109 0.01 3.6x 10-3

o.91Jo 0.01 3.6x 10-4

Stabilizing
Collisio

B
Frequency, UC

8.7 X 10-2

5.8x 10-2

4.7 x 10-2

aCollisions to stabilize based on Singhaus theory vs = 3.04/yo3 ~/np ~02/~4.

b
All frequencies ●re in units of the plasma frequency.

●nd the scattering angle has been taken to be the betatron angle. The differ-

ence in the scaling of the critical collision frequency between our results and

those based on the ●arlier models is significant.

The mechanism of the collisional stabilization is illustrated in the plot

of growth rate as a function of collision frequency presented in Fig. 2. The

E

,. *

Fig. 2

Instability “growth rate 6 ●s a
function of plasma ●lectron colli-
sion frequency.

.,

parameter values are typical of the Ion

Physic& FX-25 diode beam.4 The mean

scattering angle is that to be expected

from ?loliere scattering in a 1 mil Ti

anode foil. The results are qualitative-

ly the same for other parameter values

if the mean scattering is such that the

instability in the absence of collisions

is in the quasi-hydrodynamic regime.
6

We observe that the growth rates are only

weakly affected by collisions until the

collision frequency approaches the criti-

cal collision frequency at which point

the growth is quenched very rapidly.

Physically, the phase velocity is moved

into the body of the distribution by the

collisions and the instability then be-

comes kinetic in character. Only when it

is kinetic do the collisions overcome the

growth of the mode. We have recently made

progress in solving the 2-D dispersion



i

relation given in Sec. II. The results are consistent with this interpretation.

We find that at small collision frequencies, the off-axis modes have larger

growth rates out to some value of propagation angle. As the collision frequency

is increased, this cone of angles decreases. When the critical collision fre-

quency is approached, the cone is ●ssentially of zero width with only the

parallel mode remaining. This is characteristic of the kinetic regime where the
6parallel mode has the largest growth rate. It ❑ust be emphasized, however, that

the 2-D results are of a very preliminary nature and a thorough study of the

instability in this caae remains to be carried out.

Iv. CONCLUSION AND SUHHARY

We have ❑ade significant progress in the understanding of the collisional

stabilization of the high-frequency two-stream instability in a relativistic

electron beam through a rigorous Vlasov treatment.

Substantially different scaling with parameters are obtained in comparison

with previous, essentially phenomenological, ❑odels and we have gained insight

into the ❑echanism of the stabilization process. Further investigation of the

2-D case remains to be done. The issue of stabilization of the two-stream in-

stability in finite geometry is an yet unexplored as is that of nonlinear satur-

ation, by trapping, of the instability in the presence of momentum spread on the

beam and collisions on the plaama elt?ctrons. These are important in the appli-

cation of relativistic ●lectron beama to the heating of dense plasmas
2,11 and

possibly in the interpretat.ionof neutral gas propagation ●xperiments.10 Exten-

sion of our research into these areas will necessarily rely on the investigations

outlined above.
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